Utilization of Google Earth Engine to Identify Vegetation Density on Saparua Island, Maluku Province Using the Normalized Difference Vegetation Index Method

Authors

  • Anelia Wlary Geography Education Study Program, Pattimura University Author
  • Susan Evelin Manakane Geography Education Study Program, Pattimura University Author

Keywords:

Google Earth Engine, NDVI, Saparua Island

Abstract

This study discusses the use of Google Earth Engine to identify vegetation density on Saparua Island, Maluku Province, using the Normalized Difference Vegetation Index (NDVI) method. Saparua Island is an area rich in biodiversity, and vegetation monitoring is key to nature conservation and resource management. By accessing Sentinel-2 MSI Level-2A data through Google Earth Engine, NDVI analysis was conducted to understand the distribution and changes in vegetation density on the island. The results of the vegetation density analysis showed that the lowest value was -0.56 and the highest value was 0.81. The results of vegetation density are then classified into three classes, namely areas that have low vegetation density of 797.84 ha or 5.01%, areas that have medium vegetation density of 5,368.62 ha or 33.72% and areas that have high vegetation density of 9,753.56 ha or 61.27%. The results of this analysis can support environmental conservation efforts and sustainable agricultural development on Saparua Island

Downloads

Download data is not yet available.

References

Achmadi, P. N., Dimyati, M., Manesa, M. D. M., & Rakuasa, H. (2023). MODEL PERUBAHAN TUTUPAN LAHAN BERBASIS CA-MARKOV: STUDI KASUS KECAMATAN TERNATE UTARA, KOTA TERNATE. Jurnal Tanah Dan Sumberdaya Lahan, 10(2), 451–460. https://doi.org/10.21776/ub.jtsl.2023.010.2.28

Amiri, M., & Pourghasemi, H. R. (2022). Mapping the NDVI and monitoring of its changes using Google Earth Engine and Sentinel-2 images. In Computers in Earth and Environmental Sciences (pp. 127–136). Elsevier. https://doi.org/10.1016/B978-0-323-89861-4.00044-0

Aryal, J., Sitaula, C., & Aryal, S. (2022). NDVI Threshold-Based Urban Green Space Mapping from Sentinel-2A at the Local Governmental Area (LGA) Level of Victoria, Australia. Land, 11(3), 351. https://doi.org/10.3390/land11030351

Berhanu, B., & Bisrat, E. (2018). Identification of Surface Water Storing Sites Using Topographic Wetness Index (TWI) and Normalized Difference Vegetation Index (NDVI). Journal of Natural Resources and Development, 8, 91–100. https://doi.org/10.5027/jnrd.v8i0.09

BHARTENDU SAJAN, SHRUTI KANGA, SURAJ KUMAR SINGH, VARUN NARAYAN MISHRA, & BOJAN DURIN. (2023). Spatial variations of LST and NDVI in Muzaffarpur district, Bihar using Google earth engine (GEE) during 1990-2020. Journal of Agrometeorology, 25(2), 262–267. https://doi.org/10.54386/jam.v25i2.2155

BPS. (2021). Kabupaten Maluku Tengah Dalam Angka 2021. Badan Pusat Statistik Kabupaten Maluku Tengah.

Heinrich Rakuasa, D. A. S. (2023). Analysis of Vegetation Index in Ambon City Using Sentinel-2 Satellite Image Data with Normalized Difference Vegetation Index (NDVI) Method based on Google Earth Engine. Journal of Innovation Information Technology and Application, 5(1), 74–82. https://doi.org/https://doi.org/10.35970/jinita.v5i1.1869

Huang, S., Tang, L., Hupy, J. P., Wang, Y., & Shao, G. (2021). A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. Journal of Forestry Research, 32(1), 1–6. https://doi.org/10.1007/s11676-020-01155-1

Latue, P. C., Rakuasa, H., & Sihasale, D. A. (2023). Analisis Kerapatan Vegetasi Kota Ambon Menggunakan Data Citra Satelit Sentinel-2 dengan Metode MSARVI Berbasis Machine Learning pada Google Earth Engine. Sudo Jurnal Teknik Informatika, 2(2), 68–77. https://doi.org/10.56211/sudo.v2i2.270

Li, Z., & Demir, I. (2023). U-net-based semantic classification for flood extent extraction using SAR imagery and GEE platform: A case study for 2019 central US flooding. Science of The Total Environment, 869, 161757. https://doi.org/https://doi.org/10.1016/j.scitotenv.2023.161757

Manakane, S. E., Rakuasa, H., & Latue, P. C. (2023). Pemanfaatan Teknologi Penginderaan Jauh dan Sistem Informasi Geografis untuk Identifikasi Perubahan Tutupan Lahan di DAS Marikurubu, Kota Ternate. Tabela Jurnal Pertanian Berkelanjutan, 1(2), 51–60.

Salakory, M., Rakuasa, H. (2022). Modeling of Cellular Automata Markov Chain for predicting the carrying capacity of Ambon City. Jurnal Pengelolaan Sumberdaya Alam Dan Lingkungan (JPSL), 12(2), 372–387. https://doi.org/https://doi.org/10.29244/jpsl.12.2.372-387

Wang, Q., Moreno-Martínez, Á., Muñoz-Marí, J., Campos-Taberner, M., & Camps-Valls, G. (2023). Estimation of vegetation traits with kernel NDVI. ISPRS Journal of Photogrammetry and Remote Sensing, 195, 408–417. https://doi.org/10.1016/j.isprsjprs.2022.12.019

Zhao, Q., Yu, L., Li, X., Peng, D., Zhang, Y., & Gong, P. (2021). Progress and Trends in the Application of Google Earth and Google Earth Engine. Remote Sensing, 13(18), 3778. https://doi.org/10.3390/rs13183778

Published

2023-08-25