Spatial Analysis of Landslide Potential Areas in Allang Village, Ambon Island Based on Slope Morphology

Authors

  • Reindino Letedara Geography Education Study Program, Pattimura University, Indonesia Author
  • Daniel Anthoni Sihasale Geography Education Study Program, Pattimura University, Indonesia Author
  • Ferol Huwae Geography Education Study Program, Pattimura University, Indonesia Author
  • Philia Christi Latue Biology Education Study Program, Pattimura University, Indonesia Author
  • Heinrich Rakuasa Department of Geography, University of Indonesia, Indonesia Author

Keywords:

Ambon, Alang, Slope Morphology, Landslide

Abstract

This research discusses spatial analysis of landslide potential areas in Allang Village, Ambon Island, using slope morphology method. The purpose of the analysis is to identify areas prone to landslides based on slope shape and slope gradient. The results showed that the landslide potential area in very low class is 4144.52 ha or 4.72%, the landslide potential area in low class is 1,368.63 ha or 44.68%, the landslide potential area in medium class is 631.08 ha or 20.60%, and the landslide potential area in high class is 918.78 ha or 30.00%. These results have significant implications for safe spatial planning, sustainable infrastructure development, and disaster mitigation measures. This analysis also improves understanding of human-environment interactions and encourages steps towards a safer and more sustainable future

Downloads

Download data is not yet available.

References

Abdul Muin, & Heinrich Rakuasa. (2023). Spatial Analysis of Landslide Potential Using Modification of the Storie In-dex Method in the Wae Batu Gajah Watershed, Ambon City, Indonesia. International Journal of Scientific Multidisciplinary Research, 1(3), 107–116. https://doi.org/10.55927/ijsmr.v1i3.3625

BNPB. (2021). IRBI (Indeks Resiko Bencana Indonesia) Tahun 2021. Direktorat Pengurangan Risiko Bencana, BNPB, 115. https://www.bnpb.go.id//uploads/renas/1/BUKU RENAS PB.pdf

Comert, R., Avdan, U., Gorum, T., & Nefeslioglu, H. A. (2019). Mapping of shallow landslides with object-based image analysis from unmanned aerial vehicle data. Engineering Geology, 260(July), 105264. https://doi.org/10.1016/j.enggeo.2019.105264

Harist, M. C., Afif, H. A., Putri, D. N., & Shidiq, I. P. A. (2018). GIS modelling based on slope and morphology for landslide potential area in Wonosobo, Central Java. MATEC Web of Conferences, 229, 03004. https://doi.org/10.1051/matecconf/201822903004

Heinrich Rakuasa, G. S. (2022). Analisis Spasial Kesesuaian dan Evaluasi Lahan Permukiman di Kota Ambon. Jurnal Sains Informasi Geografi (J SIG), 5(1), 1–9. https://doi.org/DOI: http://dx.doi.org/10.31314/j%20sig.v5i1.1432

Iswari, M. Y., & Anggraini, K. (2018). DEMNAS: MODEL DIGITAL KETINGGIAN NASIONAL UNTUK APLIKASI KEPESISIRAN. OSEANA, 43(4). https://doi.org/10.14203/oseana.2018.Vol.43No.4.2

Jakob, M. (2022). Landslides in a changing climate. In Landslide Hazards, Risks, and Disasters (pp. 505–579). Elsevier. https://doi.org/10.1016/B978-0-12-818464-6.00003-2

Latue, P. C., Manakane, S. E., & Rakuasa, H. (2023). Analisis Perkembangan Kepadatan Permukiman di Kota Ambon Tahun 2013 dan 2023 Menggunakan Metode Kernel Density. Blend Sains Jurnal Teknik, 2(1), 26–34. https://doi.org/https://doi.org/10.56211/blendsains.v2i1.272

Latue, P. C., Sihasale, D. A., & Rakuasa, H. (2023). Pemetaan Daerah Potensi Longsor di Kecamatan Leihitu Barat, Kabupaten Maluku Tengah, Menggunakan Metode Slope Morphology (SMORPH). INSOLOGI: Jurnal Sains Dan Teknologi, 2(3), 486–495. https://doi.org/https://doi.org/10.55123/insologi.v2i3.1912

Pakniany, Y., Latue, P. C., & Rakuasa, H. (2023). Pemetaan Daerah Rawan Longsor di Kecamatan Damer, Kabupaten Maluku Barat Daya, Provinsi Maluku. Jurnal Altifani Penelitian Dan Pengabdian Kepada Masyarakat, 3(2), 235–242. https://doi.org/https://doi.org/10.25008/altifani.v3i2.367

Pakniany, Y., Tiwery, W. Y., & Rakuasa, H. (2022). Mitigasi Bencana Gempa Bumi Berbasis Kearifan Lokal di Desa Nuwewang Kecamatan Pulau Letti Kabupaten Maluku Barat Daya. Dialektika: Jurnal Pemikiran Islam Dan Ilmu Sosial, 15(1), 1–7.

Permadi, M. G., Jamaludin, Parjono, & Sapsal, M. T. (2019). Implementation of the {SMORPH} method for mapping the susceptibility area of landslide in Bogor City. {IOP} Conference Series: Earth and Environmental Science, 343(1), 12195. https://doi.org/10.1088/1755-1315/343/1/012195

Putra, D. B. E., & Choanji, T. (2016). Preliminary Analysis of Slope Stability in Kuok and Surrounding Areas. Journal of Geoscience, Engineering, Environment, and Technology, 1(1), 41–44.

Rahman, A. Z. (2015). KAJIAN MITIGASI BENCANA TANAH LONGSOR DI KABUPATEN BANJARNEGARA. GEMA PUBLICA. Jurnal Manajemen Dan Kebijakan Publik, 1(1), 1–14. https://doi.org/https://doi.org/10.14710/gp.1.1.2015.1-14

Rakuasa, H., & Mehdila, M. C. (2023). Penerapan Pendidikan Mitigasi Bencana Gempa Bumi untuk Siswa dan Guru di SD Negeri 1 Poka, Kota Ambon, Provinsi Maluku. Jurnal Pengabdian Masyarakat Indonesia, 3(3), 441–446. https://doi.org/10.52436/1.jpmi.1138

Rakuasa, H., Supriatna, S., Tambunan, M. P., Salakory, M., & Pinoa, W. S. (2022). ANALISIS SPASIAL DAERAH POTENSI RAWAN LONGSOR DI KOTA AMBON DENGAN MENGGUNAKAN METODE SMORPH. Jurnal Tanah Dan Sumberdaya Lahan, 9(2), 213–221. https://doi.org/10.21776/ub.jtsl.2022.009.2.2

Rakuasa H, R. A. (2021). PEMETAAN KERENTANAN BENCANA TANAH LONGSOR BERBASIS SISTEM INFORMASI GEOGRAFIS DI KOTA AMBON. In BIG (Ed.), Prosiding Seminar Nasional Geomatika (pp. 327–336). BIG & MAPIN. https://doi.org/http://dx.doi.org/10.24895/SNG.2020.0-0.1148

Ramdhoni, F., Damayanti, A., & Indra, T. L. (2020). Smorph application for landslide identification in Kebumen Regency. IOP Conference Series: Earth and Environmental Science, 451(1), 012013. https://doi.org/10.1088/1755-1315/451/1/012013

Ristya, Y., Supriatna, & Sobirin. (2019). Spatial pattern of landslide potensial area by {SMORPH}, {INDEX} {STORIE} and {SINMAP} method In Pelabuhanratu and surrounding area, Indonesia. {IOP} Conference Series: Earth and Environmental Science, 338(1), 12033. https://doi.org/10.1088/1755-1315/338/1/012033

Rossi, M., Guzzetti, F., Salvati, P., Donnini, M., Napolitano, E., & Bianchi, C. (2019). A predictive model of societal landslide risk in Italy. Earth-Science Reviews, 196(April), 102849. https://doi.org/10.1016/j.earscirev.2019.04.021

Somae, G., Supriatna, S., Manessa, M. D. M., & Rakuasa, H. (2022). SMORPH Application for Analysis of Landslide Prone Areas in Sirimau District, Ambon City. Social, Humanities, and Educational Studies (SHES): Conference Series, 5(4), 11. https://doi.org/10.20961/shes.v5i4.68936

Sugandhi, N., Supriatna, S., & Rakuasa, H. (2023). Identification of Landslide Prone Areas Using Slope Morphology Method in South Leitimur District, Ambon City. Jambura Geoscience Review, 5(1), 12–21. https://doi.org/https://doi.org/10.34312/jgeosrev.v5i1.14810

Ullah, F., Su, L., Cheng, L., & Alam, M. (2022). Landslide Hazard Assessment and Runout Simulation by Utilizing Remote Sensing, Geophysical, and Geological Techniques. Research Square. https://doi.org/10.21203/rs.3.rs-1113948/v1

Published

2023-08-23